Arduino Yun Mini + LSM9DS1

   iconI2C.png    volts33.png

Photo

Arduino Yun Mini + LSM9DS1
Arduino Yun Mini + LSM9DS1
Arduino Yun Mini + LSM9DS1
Arduino Yun Mini + LSM9DS1
Arduino Yun Mini + LSM9DS1

Sketch

// Arduino YUN mini connected to a LSM9DS1 motion processing unit
// Copyright (C) 2021 https://www.roboticboat.uk
// 6900a741-5eb6-4e2c-8f17-364feba4ea32
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <https://www.gnu.org/licenses/>.
// These Terms shall be governed and construed in accordance with the laws of
// England and Wales, without regard to its conflict of law provisions.
//
// This code is a modification from Sparkfun beerware software.
//
// Distributed as-is; no warranty is given.
//
#include <Wire.h>
#include <Bridge.h>
#include <YunServer.h>
#include <YunClient.h>
// The one global server object listening for incoming connections.
#define PORT 23
YunServer Server(PORT);
// Define an array of simultaneous clients
#define NUM_CLIENTS 2
YunClient clients[NUM_CLIENTS];
#define LSM9DS1_AccelGyro 0x6B
#define LSM9DS1_Magnet 0x1E
// LSM9DS1 Accel/Gyro (XL/G) Registers
#define WHO_AM_I_XG 0x0F
#define CTRL_REG1_G 0x10
#define CTRL_REG2_G 0x11
#define CTRL_REG3_G 0x12
#define ORIENT_CFG_G 0x13
#define OUT_X_L_G 0x18
#define OUT_X_H_G 0x19
#define OUT_Y_L_G 0x1A
#define OUT_Y_H_G 0x1B
#define OUT_Z_L_G 0x1C
#define OUT_Z_H_G 0x1D
#define CTRL_REG4 0x1E
#define CTRL_REG5_XL 0x1F
#define CTRL_REG6_XL 0x20
#define CTRL_REG7_XL 0x21
#define OUT_X_L_XL 0x28
#define OUT_X_H_XL 0x29
#define OUT_Y_L_XL 0x2A
#define OUT_Y_H_XL 0x2B
#define OUT_Z_L_XL 0x2C
#define OUT_Z_H_XL 0x2D
// LSM9DS1 Magneto Registers
#define WHO_AM_I_M 0x0F
#define CTRL_REG1_M 0x20
#define CTRL_REG2_M 0x21
#define CTRL_REG3_M 0x22
#define CTRL_REG4_M 0x23
#define CTRL_REG5_M 0x24
#define OUT_X_L_M 0x28
#define OUT_X_H_M 0x29
#define OUT_Y_L_M 0x2A
#define OUT_Y_H_M 0x2B
#define OUT_Z_L_M 0x2C
#define OUT_Z_H_M 0x2D
// LSM9DS1 WHO_AM_I Responses
#define WHO_AM_I_AG_RSP 0x68
#define WHO_AM_I_M_RSP 0x3D
//-----------------------------------------------
enum lsm9ds1_axis {
X_AXIS,
Y_AXIS,
Z_AXIS,
ALL_AXIS
};
//-----------------------------------------------
struct gyroSettings
{
// Gyroscope settings:
uint8_t enabled;
uint16_t scale;
uint8_t sampleRate;
// New gyro stuff:
uint8_t bandwidth;
uint8_t lowPowerEnable;
uint8_t HPFEnable;
uint8_t HPFCutoff;
uint8_t flipX;
uint8_t flipY;
uint8_t flipZ;
uint8_t orientation;
uint8_t enableX;
uint8_t enableY;
uint8_t enableZ;
uint8_t latchInterrupt;
};
struct accelSettings
{
// Accelerometer settings:
uint8_t enabled;
uint8_t scale;
uint8_t sampleRate;
// New accel stuff:
uint8_t enableX;
uint8_t enableY;
uint8_t enableZ;
int8_t bandwidth;
uint8_t highResEnable;
uint8_t highResBandwidth;
};
struct magSettings
{
// Magnetometer settings:
uint8_t enabled;
uint8_t scale;
uint8_t sampleRate;
// New mag stuff:
uint8_t tempCompensationEnable;
uint8_t XYPerformance;
uint8_t ZPerformance;
uint8_t lowPowerEnable;
uint8_t operatingMode;
};
struct temperatureSettings
{
// Temperature settings
uint8_t enabled;
};
struct IMUSettings
{
gyroSettings gyro;
accelSettings accel;
magSettings mag;
temperatureSettings temp;
};
//-----------------------------------------------
IMUSettings settings;
uint8_t _i2cAddress_Magnet;
uint8_t _i2cAddress_AccelGyro;
int nReceived;
float gRes;
float aRes;
float mRes;
float magSensitivity[4] = {0.00014, 0.00029, 0.00043, 0.00058};
int16_t gx, gy, gz;
int16_t ax, ay, az;
int16_t mx, my, mz;
int16_t temperature;
float gBias[3], aBias[3], mBias[3];
int16_t gBiasRaw[3], aBiasRaw[3], mBiasRaw[3];
//-----------------------------------------------
void setup()
{
Bridge.begin();
Serial.begin(115200);
init2();
if (!begin())
{
Serial.println("Failed to communicate with LSM9DS1.");
while (1)
;
}
Server.noListenOnLocalhost(); // Listen for external connections
Server.begin();
}
void loop()
{
// Process every client
for (byte i = 0; i<NUM_CLIENTS; i++)
{
if (clients[i].connected()) // Is it connected?
process(i); // It's connected, process the client
else
{
if ((bool)clients[i]) // Not connected. Is the client open?
{
// The client is not connected, but is currently open.
Serial.print("Lost connection to client ");
Serial.println(i);
clients[i].stop(); // Close and clean up the old connection
}
// At this point, the client is not connected, and is closed.
clients[i] = Server.accept(); // Try to establish a connection.
if (clients[i].connected()) // Was a connection made?
{
Serial.print("New connection on client ");
Serial.println(i);
readAccel();
clients[i].print("$ACC,");
clients[i].print(calcAccel(ax), 4);
clients[i].print(",");
clients[i].print(calcAccel(ay), 4);
clients[i].print(",");
clients[i].print(calcAccel(az), 4);
clients[i].print(" g\t");
readGyro();
clients[i].print("$GYR,");
clients[i].print(calcGyro(gx), 4);
clients[i].print(",");
clients[i].print(calcGyro(gy), 4);
clients[i].print(",");
clients[i].print(calcGyro(gz), 4);
clients[i].print(" deg/s\t");
readMag();
clients[i].print("$MAG,");
clients[i].print(calcMag(mx), 4);
clients[i].print(", ");
clients[i].print(calcMag(my), 4);
clients[i].print(", ");
clients[i].print(calcMag(mz), 4);
clients[i].println(" gauss");
clients[i].stop();
}
}
}
}
uint16_t begin()
{
_i2cAddress_AccelGyro = LSM9DS1_AccelGyro;
_i2cAddress_Magnet = LSM9DS1_Magnet;
constrainScales();
calcgRes(); // Calculate DPS
calcmRes(); // Calculate Gs
calcaRes(); // Calculate g
// Now, initialize our hardware interface.
Wire.begin(); // Initialize I2C
// To verify communication, we can read from the WHO_AM_I register of
// each device. Store those in a variable so we can return them.
uint8_t mTest = I2CreadByte(_i2cAddress_Magnet,WHO_AM_I_M); // Read the gyro WHO_AM_I
uint8_t xgTest = I2CreadByte(_i2cAddress_AccelGyro,WHO_AM_I_XG); // Read the accel/mag WHO_AM_I
uint16_t whoAmICombined = (xgTest << 8) | mTest;
if (whoAmICombined != ((WHO_AM_I_AG_RSP << 8) | WHO_AM_I_M_RSP)) return 0;
// Gyro initialization
initGyro();
// Accelerometer initialization
initAccel();
// Magnetometer initialization
initMag();
// Once everything is initialized, return the WHO_AM_I registers we read:
return whoAmICombined;
}
void constrainScales()
{
if ((settings.gyro.scale != 245) && (settings.gyro.scale != 500) &&
(settings.gyro.scale != 2000))
{
settings.gyro.scale = 245;
}
if ((settings.accel.scale != 2) && (settings.accel.scale != 4) &&
(settings.accel.scale != 8) && (settings.accel.scale != 16))
{
settings.accel.scale = 2;
}
if ((settings.mag.scale != 4) && (settings.mag.scale != 8) &&
(settings.mag.scale != 12) && (settings.mag.scale != 16))
{
settings.mag.scale = 4;
}
}
void init2()
{
settings.gyro.enabled = true;
settings.gyro.enableX = true;
settings.gyro.enableY = true;
settings.gyro.enableZ = true;
// gyro scale can be 245, 500, or 2000
settings.gyro.scale = 245;
// gyro sample rate: value between 1-6
// 1 = 14.9 4 = 238
// 2 = 59.5 5 = 476
// 3 = 119 6 = 952
settings.gyro.sampleRate = 6;
// gyro cutoff frequency: value between 0-3
// Actual value of cutoff frequency depends
// on sample rate.
settings.gyro.bandwidth = 0;
settings.gyro.lowPowerEnable = false;
settings.gyro.HPFEnable = false;
// Gyro HPF cutoff frequency: value between 0-9
// Actual value depends on sample rate. Only applies
// if gyroHPFEnable is true.
settings.gyro.HPFCutoff = 0;
settings.gyro.flipX = false;
settings.gyro.flipY = false;
settings.gyro.flipZ = false;
settings.gyro.orientation = 0;
settings.gyro.latchInterrupt = true;
settings.accel.enabled = true;
settings.accel.enableX = true;
settings.accel.enableY = true;
settings.accel.enableZ = true;
// accel scale can be 2, 4, 8, or 16
settings.accel.scale = 2;
// accel sample rate can be 1-6
// 1 = 10 Hz 4 = 238 Hz
// 2 = 50 Hz 5 = 476 Hz
// 3 = 119 Hz 6 = 952 Hz
settings.accel.sampleRate = 6;
// Accel cutoff freqeuncy can be any value between -1 - 3.
// -1 = bandwidth determined by sample rate
// 0 = 408 Hz 2 = 105 Hz
// 1 = 211 Hz 3 = 50 Hz
settings.accel.bandwidth = -1;
settings.accel.highResEnable = false;
// accelHighResBandwidth can be any value between 0-3
// LP cutoff is set to a factor of sample rate
// 0 = ODR/50 2 = ODR/9
// 1 = ODR/100 3 = ODR/400
settings.accel.highResBandwidth = 0;
settings.mag.enabled = true;
// mag scale can be 4, 8, 12, or 16
settings.mag.scale = 4;
// mag data rate can be 0-7
// 0 = 0.625 Hz 4 = 10 Hz
// 1 = 1.25 Hz 5 = 20 Hz
// 2 = 2.5 Hz 6 = 40 Hz
// 3 = 5 Hz 7 = 80 Hz
settings.mag.sampleRate = 7;
settings.mag.tempCompensationEnable = false;
// magPerformance can be any value between 0-3
// 0 = Low power mode 2 = high performance
// 1 = medium performance 3 = ultra-high performance
settings.mag.XYPerformance = 3;
settings.mag.ZPerformance = 3;
settings.mag.lowPowerEnable = false;
// magOperatingMode can be 0-2
// 0 = continuous conversion
// 1 = single-conversion
// 2 = power down
settings.mag.operatingMode = 0;
settings.temp.enabled = true;
for (int i=0; i<3; i++)
{
gBias[i] = 0;
aBias[i] = 0;
mBias[i] = 0;
gBiasRaw[i] = 0;
aBiasRaw[i] = 0;
mBiasRaw[i] = 0;
}
}
//-----------------------
// LSM9DS1 Accelerator
//-----------------------
void initAccel()
{
uint8_t tempRegValue = 0;
// CTRL_REG5_XL (0x1F) (Default value: 0x38)
// [DEC_1][DEC_0][Zen_XL][Yen_XL][Zen_XL][0][0][0]
// DEC[0:1] - Decimation of accel data on OUT REG and FIFO.
// 00: None, 01: 2 samples, 10: 4 samples 11: 8 samples
// Zen_XL - Z-axis output enabled
// Yen_XL - Y-axis output enabled
// Xen_XL - X-axis output enabled
if (settings.accel.enableZ) tempRegValue |= (1<<5);
if (settings.accel.enableY) tempRegValue |= (1<<4);
if (settings.accel.enableX) tempRegValue |= (1<<3);
I2CwriteByte(_i2cAddress_AccelGyro,CTRL_REG5_XL, tempRegValue);
// CTRL_REG6_XL (0x20) (Default value: 0x00)
// [ODR_XL2][ODR_XL1][ODR_XL0][FS1_XL][FS0_XL][BW_SCAL_ODR][BW_XL1][BW_XL0]
// ODR_XL[2:0] - Output data rate & power mode selection
// FS_XL[1:0] - Full-scale selection
// BW_SCAL_ODR - Bandwidth selection
// BW_XL[1:0] - Anti-aliasing filter bandwidth selection
tempRegValue = 0;
// To disable the accel, set the sampleRate bits to 0.
if (settings.accel.enabled)
{
tempRegValue |= (settings.accel.sampleRate & 0x07) << 5;
}
switch (settings.accel.scale)
{
case 4:
tempRegValue |= (0x2 << 3);
break;
case 8:
tempRegValue |= (0x3 << 3);
break;
case 16:
tempRegValue |= (0x1 << 3);
break;
// Otherwise it'll be set to 2g (0x0 << 3)
}
if (settings.accel.bandwidth >= 0)
{
tempRegValue |= (1<<2); // Set BW_SCAL_ODR
tempRegValue |= (settings.accel.bandwidth & 0x03);
}
I2CwriteByte(_i2cAddress_AccelGyro,CTRL_REG6_XL, tempRegValue);
// CTRL_REG7_XL (0x21) (Default value: 0x00)
// [HR][DCF1][DCF0][0][0][FDS][0][HPIS1]
// HR - High resolution mode (0: disable, 1: enable)
// DCF[1:0] - Digital filter cutoff frequency
// FDS - Filtered data selection
// HPIS1 - HPF enabled for interrupt function
tempRegValue = 0;
if (settings.accel.highResEnable)
{
tempRegValue |= (1<<7); // Set HR bit
tempRegValue |= (settings.accel.highResBandwidth & 0x3) << 5;
}
I2CwriteByte(_i2cAddress_AccelGyro,CTRL_REG7_XL, tempRegValue);
}
void calcaRes()
{
aRes = ((float) settings.accel.scale) / 32768.0;
}
void readAccel()
{
uint8_t temp[6]; // We'll read six bytes from the accelerometer into temp
I2CreadBytes(_i2cAddress_AccelGyro,OUT_X_L_XL, temp, 6); // Read 6 bytes, beginning at OUT_X_L_XL
ax = (temp[1] << 8) | temp[0]; // Store x-axis values into ax
ay = (temp[3] << 8) | temp[2]; // Store y-axis values into ay
az = (temp[5] << 8) | temp[4]; // Store z-axis values into az
}
float calcAccel(int16_t accel)
{
// Return the accel raw reading times our pre-calculated g's / (ADC tick):
return aRes * accel;
}
//-----------------------
// LSM9DS1 Gyroscope
//-----------------------
void initGyro()
{
uint8_t tempRegValue = 0;
if (settings.gyro.enabled)
{
tempRegValue = (settings.gyro.sampleRate & 0x07) << 5;
}
switch (settings.gyro.scale)
{
case 500:
tempRegValue |= (0x1 << 3);
break;
case 2000:
tempRegValue |= (0x3 << 3);
break;
// Otherwise we'll set it to 245 dps (0x0 << 4)
}
tempRegValue |= (settings.gyro.bandwidth & 0x3);
I2CwriteByte(_i2cAddress_AccelGyro,CTRL_REG1_G, tempRegValue);
// CTRL_REG2_G (Default value: 0x00)
// [0][0][0][0][INT_SEL1][INT_SEL0][OUT_SEL1][OUT_SEL0]
// INT_SEL[1:0] - INT selection configuration
// OUT_SEL[1:0] - Out selection configuration
I2CwriteByte(_i2cAddress_AccelGyro,CTRL_REG2_G, 0x00);
// CTRL_REG3_G (Default value: 0x00)
// [LP_mode][HP_EN][0][0][HPCF3_G][HPCF2_G][HPCF1_G][HPCF0_G]
// LP_mode - Low-power mode enable (0: disabled, 1: enabled)
// HP_EN - HPF enable (0:disabled, 1: enabled)
// HPCF_G[3:0] - HPF cutoff frequency
tempRegValue = settings.gyro.lowPowerEnable ? (1<<7) : 0;
if (settings.gyro.HPFEnable)
{
tempRegValue |= (1<<6) | (settings.gyro.HPFCutoff & 0x0F);
}
I2CwriteByte(_i2cAddress_AccelGyro,CTRL_REG3_G, tempRegValue);
// CTRL_REG4 (Default value: 0x38)
// [0][0][Zen_G][Yen_G][Xen_G][0][LIR_XL1][4D_XL1]
// Zen_G - Z-axis output enable (0:disable, 1:enable)
// Yen_G - Y-axis output enable (0:disable, 1:enable)
// Xen_G - X-axis output enable (0:disable, 1:enable)
// LIR_XL1 - Latched interrupt (0:not latched, 1:latched)
// 4D_XL1 - 4D option on interrupt (0:6D used, 1:4D used)
tempRegValue = 0;
if (settings.gyro.enableZ) tempRegValue |= (1<<5);
if (settings.gyro.enableY) tempRegValue |= (1<<4);
if (settings.gyro.enableX) tempRegValue |= (1<<3);
if (settings.gyro.latchInterrupt) tempRegValue |= (1<<1);
I2CwriteByte(_i2cAddress_AccelGyro,CTRL_REG4, tempRegValue);
// ORIENT_CFG_G (Default value: 0x00)
// [0][0][SignX_G][SignY_G][SignZ_G][Orient_2][Orient_1][Orient_0]
// SignX_G - Pitch axis (X) angular rate sign (0: positive, 1: negative)
// Orient [2:0] - Directional user orientation selection
tempRegValue = 0;
if (settings.gyro.flipX) tempRegValue |= (1<<5);
if (settings.gyro.flipY) tempRegValue |= (1<<4);
if (settings.gyro.flipZ) tempRegValue |= (1<<3);
I2CwriteByte(_i2cAddress_AccelGyro,ORIENT_CFG_G, tempRegValue);
}
void calcgRes()
{
gRes = ((float) settings.gyro.scale) / 32768.0;
}
void readGyro()
{
uint8_t temp[6]; // We'll read six bytes from the gyro into temp
I2CreadBytes(_i2cAddress_AccelGyro,OUT_X_L_G, temp, 6); // Read 6 bytes, beginning at OUT_X_L_G
gx = (temp[1] << 8) | temp[0]; // Store x-axis values into gx
gy = (temp[3] << 8) | temp[2]; // Store y-axis values into gy
gz = (temp[5] << 8) | temp[4]; // Store z-axis values into gz
}
float calcGyro(int16_t gyro)
{
// Return the gyro raw reading times our pre-calculated DPS / (ADC tick):
return gRes * gyro;
}
//-----------------------
// LSM9DS1 Magnet
//-----------------------
void initMag()
{
uint8_t tempRegValue = 0;
// CTRL_REG1_M (Default value: 0x10)
// [TEMP_COMP][OM1][OM0][DO2][DO1][DO0][0][ST]
// TEMP_COMP - Temperature compensation
// OM[1:0] - X & Y axes op mode selection
// 00:low-power, 01:medium performance
// 10: high performance, 11:ultra-high performance
// DO[2:0] - Output data rate selection
// ST - Self-test enable
if (settings.mag.tempCompensationEnable) tempRegValue |= (1<<7);
tempRegValue |= (settings.mag.XYPerformance & 0x3) << 5;
tempRegValue |= (settings.mag.sampleRate & 0x7) << 2;
I2CwriteByte(_i2cAddress_Magnet,CTRL_REG1_M, tempRegValue);
// CTRL_REG2_M (Default value 0x00)
// [0][FS1][FS0][0][REBOOT][SOFT_RST][0][0]
// FS[1:0] - Full-scale configuration
// REBOOT - Reboot memory content (0:normal, 1:reboot)
// SOFT_RST - Reset config and user registers (0:default, 1:reset)
tempRegValue = 0;
switch (settings.mag.scale)
{
case 8:
tempRegValue |= (0x1 << 5);
break;
case 12:
tempRegValue |= (0x2 << 5);
break;
case 16:
tempRegValue |= (0x3 << 5);
break;
// Otherwise we'll default to 4 gauss (00)
}
I2CwriteByte(_i2cAddress_Magnet,CTRL_REG2_M, tempRegValue); // +/-4Gauss
// CTRL_REG3_M (Default value: 0x03)
// [I2C_DISABLE][0][LP][0][0][SIM][MD1][MD0]
// I2C_DISABLE - Disable I2C interace (0:enable, 1:disable)
// LP - Low-power mode cofiguration (1:enable)
// SIM - SPI mode selection (0:write-only, 1:read/write enable)
// MD[1:0] - Operating mode
// 00:continuous conversion, 01:single-conversion,
// 10,11: Power-down
tempRegValue = 0;
if (settings.mag.lowPowerEnable) tempRegValue |= (1<<5);
tempRegValue |= (settings.mag.operatingMode & 0x3);
I2CwriteByte(_i2cAddress_Magnet,CTRL_REG3_M, tempRegValue); // Continuous conversion mode
// CTRL_REG4_M (Default value: 0x00)
// [0][0][0][0][OMZ1][OMZ0][BLE][0]
// OMZ[1:0] - Z-axis operative mode selection
// 00:low-power mode, 01:medium performance
// 10:high performance, 10:ultra-high performance
// BLE - Big/little endian data
tempRegValue = 0;
tempRegValue = (settings.mag.ZPerformance & 0x3) << 2;
I2CwriteByte(_i2cAddress_Magnet,CTRL_REG4_M, tempRegValue);
// CTRL_REG5_M (Default value: 0x00)
// [0][BDU][0][0][0][0][0][0]
// BDU - Block data update for magnetic data
// 0:continuous, 1:not updated until MSB/LSB are read
tempRegValue = 0;
I2CwriteByte(_i2cAddress_Magnet,CTRL_REG5_M, tempRegValue);
}
void calcmRes()
{
//mRes = ((float) settings.mag.scale) / 32768.0;
switch (settings.mag.scale)
{
case 4:
mRes = magSensitivity[0];
break;
case 8:
mRes = magSensitivity[1];
break;
case 12:
mRes = magSensitivity[2];
break;
case 16:
mRes = magSensitivity[3];
break;
}
}
void readMag()
{
uint8_t temp[6];
// Read 6 bytes, beginning at OUT_X_L_M
I2CreadBytes(_i2cAddress_Magnet,OUT_X_L_M, temp, 6);
mx = (temp[1] << 8) | temp[0];
my = (temp[3] << 8) | temp[2];
mz = (temp[5] << 8) | temp[4];
}
float calcMag(int16_t mag)
{
// Return the mag raw reading times our pre-calculated Gs / (ADC tick):
return mRes * mag;
}
//-----------------------
// LSM9DS1 i2C communication
//-----------------------
uint8_t I2CreadByte(uint8_t i2cAddress, uint8_t registerAddress)
{
uint8_t data; // `data` will store the register data
// Initialize the Tx buffer
Wire.beginTransmission(i2cAddress);
// Put slave register address in Tx buffer
Wire.write(registerAddress);
// End transmission
Wire.endTransmission();
// Read one byte from slave register address
nReceived = Wire.requestFrom(i2cAddress, (uint8_t) 1);
// Something has gone wrong
if (nReceived != 1) return 0;
// Fill Rx buffer with result
data = Wire.read();
// Return data read from slave register
return data;
}
void I2CwriteByte(uint8_t i2cAddress, uint8_t registerAddress, uint8_t data)
{
// Initialize the Tx buffer
Wire.beginTransmission(i2cAddress);
// Put slave register address in Tx buffer
Wire.write(registerAddress);
// Put data in Tx buffer
Wire.write(data);
// Send the Tx buffer
Wire.endTransmission();
}
uint8_t I2CreadBytes(uint8_t i2cAddress, uint8_t registerAddress, uint8_t * dest, uint8_t count)
{
// Initialize the Tx buffer
Wire.beginTransmission(i2cAddress);
// Next send the register to be read. OR with 0x80 to indicate multi-read.
// Put slave register address in Tx buffer
Wire.write(registerAddress | 0x80);
// End transmission
Wire.endTransmission();
// Read bytes from slave register address
nReceived = Wire.requestFrom(i2cAddress, count);
// Something has gone wrong
if (nReceived != count) return 0;
for (int i=0; i<count;)
{
if (Wire.available())
{
dest[i++] = Wire.read();
}
}
return count;
}
void process(byte index)
{
// Read and echo all available data from the client.
String str = "";
// Read all available data, append to string
while (clients[index].available())
str = str + (char)clients[index].read();
// Trim off non-printable characters.
str.trim();
// Got something? If so, print out what was recevied, send client ID back to other side
if (str.length() > 0)
{
Serial.print("Received from client ");
Serial.print(index);
Serial.println(": received \"" + str + "\"");
clients[index].print("Client ");
clients[index].println(index);
}
}
RoboticBoat.uk